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SUMMARY

The so-called CPI ®nite volume method is applied to the computation of the deep dynamic stall of a pitching
NACA 0012 aerofoil. The evolution of ¯ow sequences is analysed for two turbulence models, the so-called
Baldwin±Barth and K±o SST models, and compared with available data of McAlister et al. The hysteresis loops
for the force coef®cients are presented for three different reduced frequencies of the pitching motion and
compared with experimental data. The agreement with available data is good during the upstroke phase and it is
found that the level of disagreement during the downstroke phase can be attributed to the overestimation of the
pressure minima within shed vortices. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Accurate estimation of forces and moments acting on an aerofoil at high incidence is an important

part of the wing design process. The dif®culties associated with viscous ¯ow computations inhibit

their routine use in engineering calculations. Dif®culties are both numerical (accuracy and grid

independence of viscous ¯ow predictions) and physical (turbulence modelling, transition, scale

effects). Moreover, the validation of two-dimensional calculations using available experimental data

is dif®cult because such data are often contaminated by tunnel wall or end-plate interference effects.

Physical dif®culties are particularly noteworthy in stall and post-stall situations where the ¯ow

involves massive separation and unsteady phenomena. This makes the accurate prediction of stall

incidence and maximum lift coef®cient as required by manufacturers particularly challenging. Past

stall the ¯ow ®eld structure (vortex shedding) and the unsteady forces are important factors in

dynamic stability and control studies, particularly for military ®ghter applications where low-speed,

high-incidence ¯ight is desirable. Another important area involving signi®cant regions of separated

¯ows is in applications using propeller or helicopter rotor blades.

The present work deals with the complex problem of dynamic stall: the incidence is taken as a

sinusoidal function of time so that the aerofoil is submitted to a pitching motion around an incidence

close to that corresponding to amax, the ®xed (static stall) incidence above which the lift of the

aerofoil would drop. Dynamic stall differs from its static counterpart in two major ways. First, the
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maximum lift obtainable under dynamic conditions is greater than that under static conditions.

Secondly, while static lift is uniquely related to incidence, stall depends upon the time history of

motion and has a hysteresis loop associated with it. This time history makes dynamic stall predictions

particularly dif®cult, especially for deep stall cases in which the oscillation amplitude around the

mean angle of incidence a0 is of the order of a0, while a0 is close enough to amax.

A lot of phenomena are known to in¯uence stall characteristics such as drag, lift and moment

coef®cients. Although the different values of CLmax for M< 0�4 are caused by Reynolds number

variations, while compressibility effects are negligible, the peak velocity on the aerofoil at stall

angles of attack is several times higher than at zero incidence, indicating that the assumption of

incompressible ¯ow may be incorrect for velocity ®elds. For this reason we use only very-low-Mach-

number data in order to minimize compressibility effects.

Despite these dif®culties, computational studies have addressed the stall problem for a long time.

In the following we summarize the available turbulent ¯ow simulations which have been performed

for angles of incidence which vary in a sinusoidal way (Tables I and II). Although instructive, laminar

¯ow calculations of a dynamic stall loop have not been considered. The tables gather the following

information. In Table I left to right we give the author(s), the ®rst published references of the

method,1±19 the turbulence model used, the wall region treatment, the method of grid generation, the

main characteristics of the method used for the momentum equations and the algebraic solution of the

resulting discrete problem. Table II gives the author(s) of the described method, the space and time

discretizations, the grid size and its topology (C, H or O), the size of the computational domain, the

location of the ®rst grid line away from the wall and the test conditions: Reynolds number, Mach

number and incidence as well as the reduced frequency of oscillation k� 2pfU1=2c and (in

parentheses) the location around which the aerofoil is pitched; ®nally some comments on the tests are

given.

The available methods can be seen to belong to two distinct categories. Most of the methods use

the incompressible ¯ow equations with either a collocative approach (as in the present method) or a

staggered grid approach. The pressure±velocity coupling is treated in an iterative way using standard

segregation techniques20 such as PISO or SIMPLER, or a penalty approach, or a pseudocompres-

sibility algorithm. The other methods starts from the compressible ¯ow equations and use either the

so-called Briley±MacDonald approach with an ADI method following the pioneering efforts of

Shamroth and Gibeling,2,3 or the thin layer Navier±Stokes approximation with an approximate

factorization of Beam and Warming type.21 While the former method seems particularly adequate for

low Mach numbers, the latter has been developed with the purpose of addressing more speci®cally

transonic ¯ows with adequate shock-capturing techniques.

While the time discretization is most often the (second-order) fully implicit backward Euler type

(except for Reference 19 which uses a Runge±Kutta explicit method), incompressible ¯ow methods

in general use hybrid schemes for the numerical treatment of convective terms. Second-order

accuracy is a required condition for a good description of dynamic stall cases, since the time

integration has to be carried out over at least two periods of oscillations. Compressible ¯ow methods

in general use space-centred second-order schemes with systematic explicit fourth-order dissipation

and, eventually, second-order implicit dissipation. Flux vector splitting with upwind-type schemes is

also encountered6,10 and this avoids the need for arti®cial dissipation.

Signi®cant differences are noticeable with regard to turbulence modelling. The so-called algebraic

eddy viscosity models are the most used, generally the Baldwin±Lomax (BL) model.22 This is of

course due to its technical simplicity. Other choices include one-equation models such as the K±l

model in which the length scale l has to be algebraically satis®ed,2,3 or the so-called Baldwin±Barth

(BB) model23 which solves an additional equation for the eddy viscosity.17 There is, however, a

signi®cant trend towards the use of two-equation models, for the main reason that they produce the
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Table I

Author(s) Reference Turbulence Wall region Grid
generation

Momentum equation Solver

Chyu et al.1 AIAA 79-1554 BL No Elliptic TLNS-AF
Beam±Warming

Pentadiagonal solver

Shamroth and Gibeling2,3 AGARD CP 296 K±l Fish±Macdonald No Analytic Collocated grid Block elimination
Briley±McDonald ADI Douglas±Gunn

Tassa and Sankar4,5 AIAA 81-1289 BL No Elliptic Briley±McDonald ADI Douglas±Gunn
Hegna6 AIAA 82- 0092 Cebeci±Smith No Elliptic Collocated grid Chorin, SOR
Rumsey and Anderson7 AIAA 88-0329 BL, JK No Elliptic TLNS-AF Block tridiagonal solver
Visbal8±10 AIAA 88-0132 BL No Elliptic TLNS- AF
Tuncer et al.11 AIAA 89- 0021 BL No Conformal W eq. �Biot±Savart Fourier series� SOR
Wu et al.12 AIAA 89-0609 BL, JK, K±e Gorski (K± e) Conformal AF Beam±Warming Pentadiagonal solver
Dindar and Kaynak13 AIAA 92-0027 BL, JK No Hyperbolic AF with LU-ADI Pulliam±Chaussee
Rizzetta and Visbal14 AIAA J., 1993 BL, K±e No Conformal AF Beam±Warming Pentadiagonal solver
Srinivasan et al.15 AIAA 93-3403 5 models No Elliptic AF Beam±Warming Pentadiagonal solver
Ekaterinaris16 AIAA 89-0024 BL No Elliptic Briley±McDonald ADI Douglas±Gunn
Ekaterinaris and Menter17 AIAA J., 1994 K±o, BB, SA No Elliptic Steger±Warming Approx. factorization
Yang18 AIAA 94- 0286 BL, K±e WF with K± e Collocated grid Pressure correction
Niu et al.19 AIAA 94- 0308 ? No (?) Elliptic Steger±Warming modif. ?

Key: WF: wall functions.
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Table II.

Author(s) Space d Time d Grid Domain Resolution Test case(s) 10±6Re Ma a (�) k (axis) Remarks

Chyu et al.1 Steger O(h2) Euler O(Dt2) 876 41 C 8c ? NACA 64A010 2�5±12�5 0�5±0�8 0� 1 0�2 (c=4) Phase analysis
Shamroth and
Gibeling2,3

Ctrd. h2� diss. h4 Euler bwd. 816 39 C 26 10±5c NACA 0012 1 0�147 6� 13 0�1 (c=2) Massive stall

Tassa and Sankar4,5 O(h2)� 4th Euler O(Dt2) 496 31 16c 10±4c NACA 0012 2�5 0�3 15� 5 0�15±0�5 (c=2) Coarse grid
art. damping ONERA

CambreÂ
2�5 0�3 15� 5 0�25 (c=2)

Hegna6 Hybrid Euler O(Dt) 836 44 O ? y� � 5 NACA 0012 0�17 0 3� 5 0�41 (c=2) Cp, lift and drag
Rumsey and
Anderson7

Roe� limiter Euler O(Dt) 2576 97 C 15c 2�156 10±6c NACA 0012 4�8 0�6 4�86� 2�44 0�162

Visbal8±10 Ctrd.� diss. h2±h4 Euler O(Dt2) O 30c 10±5c NACA 0015 2±3 0�2±0�6 0�12±1�26 (c=4) Const. pitch-up
Tuncer et al.11 O(h2) upwd. Euler O(Dt) 806 60 O Joukowski 1 0 5� 12�5 1±0�25 (c=4) Correct loops
Wu et al.12 Cntrd.� diss. h2±h4 Euler O(Dt) NACA 0012 3�45 0�28 15� 10 0�151
Dindar and
Kaynak13

Cntrd.� diss. h2±h4 Euler O(Dt2) 2156 60 C 20c 10±5c NACA 0012 4 0�3 10� 10 0�1 �Light stall
cases

Rizzetta and
Visbal14

Cntrd.� diss. h2±h4 Euler O(Dt2) 3036 131 C SSC-A09 2, 4 0�2±0�4 0�02±0�2 Const. pitch-up

Srinivasan et al.15 O(h2)� 4th Euler O(Dt2) 6716 71 C 15c 26 10±5c NACA 0015 1�95 0�294 15� 4�2 0�1
art. damping 3616 141 C

Ekaterinaris16 O(h2)� 4th Euler O(Dt2) 2016 58 C 8c SSC-A09 2 0�2 15� 5 0�1 (c=2) Compress.
effects

art. damping
Ekaterinaris and
Menter17

Osher�
Steger±

Euler O(Dt) 3116 91 C ? 10±5c,
y� � 2

NACA 0015 2 0�34 15� 4�2 0�1 Grid re®nement

Warming 4216 151 NACA 0012 4 0�3 10� 5 0�1 Transition
effects

Yang18 TVD O(h3) Euler O(Dt2) 2006 1000 y� � 0�2, 14
(WF)

NACA 0015 1�95 0�29 4� 4�2 0�05 �Constant
pitch

NACA 0012 3�7 0�283 15� 10 0�15 detailed
in¯uence

SSC-A09 2, 4 0�2, 0�4 15� 10 0�01 studies
Niu et al.19 MUSCL� limiter RK O(Dt2) 2496 64 NACA 0012 4 0�3 15� 10 0�15 (c=4) Also k� 1�5



eddy viscosity without resorting to empirical length scale speci®cations. The so-called k±e model is

the most often used, sometimes in conjunction with wall functions.18 The wall function approach

allows signi®cant savings in grid points (since the ®rst grid points lie at about y+� 50±200 instead of

y+� 1) but is clearly inadequate when ¯ow separation is present. It is also remarkable that the results

show considerable differences depending on the type of second turbulence equation used (e.g. e- or

o-equation15,17).

Among the considered test cases, the well-known NACA 0012 aerofoil is the most often studied,

one of the historical reasons being that a conformal grid can be speci®ed for it analytically and

another reason being that detailed dynamic stall experiments24±27 have often been conducted on this

case. Of course, other aerofoils can be treated as well with the development of numerically generated

boundary-®tted grids. The design of the grid surrounding the aerofoil is performed in general using

elliptic grid generation techniques, although conformal mapping techniques allow an elegant way of

providing an adequate orthogonal (and particularly smooth) grid,11,12,14 a hyperbolic grid generation

technique being used in Reference 13. Most topologies are of the O- or C-type, while the number of

grid points shows a marked tendency to increase with the available computer resources. The ¯ow

domain and the grid resolution depend on the Reynolds and Mach numbers of the considered test

cases and best results are associated with a boundary layer grid resolution placing the ®rst points

away from the wall at a distance of the order of some integer value of 10±5c.

The paper is organized as follows. The ¯ow equations and numerical aspects are presented in

Sections 2 and 3 respectively together with the turbulence models used. Some examples of

calculations of the turbulent ¯ow past an aerofoil oscillating sinusoidally in pitch are presented in

Section 4.

2. GOVERNING EQUATIONS

The unsteady incompressible Reynolds-averaged Navier±Stokes equations can be written as

H?U � 0; �1�
@U

@t
� H?F � s; �2�

with the Cartesian components

�Fkj � �Uk
�Uj � Pdkj ÿ

1

Reff

@ �Uk

@xj

ÿ nT

@ �Uj

@xk

ÿ djk

O2r2

2
ÿ ekij

r2

2

dOi

dt
; �3a�

where

1

Reff

� 1

Re
� nT; P � rÿ1p� 2

3
K; s1 � 2O �U2; s2 � ÿ2O �U1: �3b�

They involve the mean Cartesian velocity components f �Ukg relative to orthonormal axes moving with

the aerofoil, the mean pressure p, the Reynolds number Re�U1c=n (where U1 is the freestream

velocity, c is the aerofoil chord and n is the kinematic viscosity of the ¯uid) and the Kronecker

symbol dkj. The two last terms (3a) involving the angular velocity o of the aerofoil are the Euler

acceleration and the centripetal acceleration. From now on, summation over repeated indices is

assumed unless speci®ed otherwise. Reff is the so-called effective Reynolds number. The source term

s is due to the Coriolis force 2V6U, but we have made the additional assumption that the ¯ow is

TURBULENT VISCOUS FLOW PAST AEROFOILS 319

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 315±366 (1997)



two-dimensional in the plane {x1, x2}, while O is along x3. Equation (3) has been obtained assuming a

linear eddy viscosity hypothesis for the turbulent Reynolds stresses:

ÿu0u0 � ÿ 2
3

KI� nT�HU� HTU�; �4�
where K � u02=2 is the so-called turbulent kinetic energy and nT is the turbulent eddy viscosity which

de®nes the eddy viscosity model to be used. In this work, two models have been tested: the Baldwin±

Barth model23 in which an additional equation is written for the turbulent Reynolds number de®ned

from nT, and the so-called K±o SST model28 which solves two transport equations, one for the

turbulent kinetic energy K and the other for o which has the dimensions of frequency.

For the applications to be considered, the complexity of the geometry prevents the use of Cartesian

co-ordinates. Numerical co-ordinate transformations are required in order to facilitate the application

of boundary conditions and transform the physical domain in which the ¯ow is studied into a

rectangular domain {x1, x2}. This computational domain consists of a set of unique squares of sides

Dxi� 1, i� 1, 2. Each unit square in the computational domain is a curvilinear quadrilateral in the

physical plane, the sides of which are measured by the moduli of the covariant vectors ai� @R=@xi.

The transformation involves by-products from the covariant basis. Of particular interest are the

following: (i) the area vectors bi� aj6 ak (i, j, k in cyclic order) which measure the oriented area

(per unit span) of a small surface of unit sides along xi and xk on a xi� const. surface in the

computational space, where bi� Jÿ1 gradxi is constructed from two small triangle-like surfaces in

the physical space; (ii) the Jacobian J of the transformation from the computational space of the co-

ordinates {xi} to the physical space of the Cartesian co-ordinates {xi}, which measures the `physical'

volume of a unit cube in the computational space and is evaluated in such a way that ai?b
j � Jd j

i;

(iii) the covariant and contravariant metric tensors gij � aj?ak and gij � gÿ1bi?b j, where g, the

determinant of gij, is the square, J2, of the previously de®ned Jacobian.

Using the chain rule derivative formula @xk=@xi � Jÿ1bk
i , we obtain

H?U � Jÿ1 @�JU i�
@xi
� Jÿ1 @�bi

k
�Uk�

@xi
; �5�

where Ui is the contravariant velocity component U?bi=J (equivalently the mass ¯ux is JUi). If
�Ui � di

k , with k� 1, 2, equation (4) yields the so-called ®rst geometric conservation law which can be

expressed as follows: when properly discretized, areas of a discrete cell will sum to the total volume.

The momentum equation (2) is written in the strong conservation form

@ �Uk

@t
� 1

J

@�bi
j
�Fkj�

@xi
� sk; �6�

with

�Fkj � �Uk
�Uj � Pdkj ÿ

bm
j

JReff

@ �Uk

@xm ÿ
nT

J
bm

k

@ �Uj

@xm ÿ djk

O2r2

2
ÿ ekij

r2

2

dOi

dt
: �7�

The convective form

@ �Uk

@t
� Ui ÿ f i

Reff

ÿ gin @nT

@xn

� �
@ �Uk

@xn � Jÿ1bi
m

@P

@xm

� gij

Reff

@2 �Uk

@xi@xj
� Jÿ2bn

j bm
k

@nT

@xn

@ �Uj

@xm � Jÿ1 @

@xi
bi

k

O2r2

2
ÿ ekjpJÿ1

dOp

dt

@

@xi

r2

2
bi

j

� �
� sk

�8�
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will also prove necessary in what follows, where

f i � 1

J

@

@xm

bi?bm

J

� �
�9�

speci®es the so-called stretching functions.

3. NUMERICAL METHOD

3.1. Grid lay-out and discrete equations

The so-called collocated cell-centred grid lay-out is used: the Cartesian velocity components and the

pressure share the same location at the centre of the control volume D (Figure 1). Owing to its non-

standard character, it is useful to make notation conventions implicit. Neighbours of the point NN at

the centre of the control volume are identi®ed by two uppercase letters: the ®rst is relative to the

direction x1, the second to the direction x2 such that the body wall is given by x2� 0. Points are

identi®ed with the letters M (minus one), P (plus one) and N (null). The ¯uxes JUi are located on the

faces of the control volume (identi®ed by a lowercase letter) in the direction of the normal to the face.

Grid points are located at the centres of the control volume D. In the following, �Uk(NN) will be the

unknown kth Cartesian velocity component at point NN. The ¯ux at cell interface pN is identi®ed as

(JUi)(pN). Although non-standard, the present notation allows a straightforward coding of the

method, particularly in the three-dimensional case.

The discrete divergence of the ¯ux f over the control volume D is simply

�DiF
i��NN� � F1�pN� ÿ F1�mN� � F2�Np� ÿ F2�Nm�; �10�

so that the discrete continuity equation results from f� JU.

Figure 1. Schematic sketch of presently used notation and in¯uence stencil of point NN for CPI method
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The time derivative is discretized using a second-order-accurate backward Euler method involving

the time levels t0� t7 dt and t00� t7 2dt besides the actuual time level t. We then have

@f
@t
� e1F� e0F

0 � e00F
00;

e1 �
3

2Dt
; e0 � ÿ

2

Dt
; e00 �

1

2Dt
;

F � f�t�; F0 � f�t0�; F00 � f�t00�:

�11�

Using (10) and (11) yields the motion equations

1

J �NN�Di�bi
j
�Uj��NN� � 0; �12�

e1
�Uk�NN� � e0

�U 0
k �NN� � e00

�U 00
k �NN� � 1

J �NN�Di�bi
j
�Fkj��NN� � sk�NN� �13�

In the discrete divergence at point NN in (13) the linearized momentum ¯ux bi? �Fk is de®ned at

interfaces pN, mN, Np and Nm as indicated in (10). For instance,

bi? �Fk�pN� � �bi?U�� �Uk � Pbi
k ÿ

bi?bm

Reff J

@ �Uk

@xm ÿ
nT

J
bi

jb
m
k

@ �Uj

@xm ÿ bi
k

O2r2

2
ÿ r2

2
bi � dO

dt

� �
k

" #
�pN�; �14�

where U* is a prediction of the velocity ®eld at the actual time. An iterative procedure is thus

required at time t in order to update U*, starting with U*�U0. The approximation of (14) and of

similar ¯uxes at mN, nP and Nm is carried out so that the resulting discrete momentum equations are

centred. For instance, with i� 1,

b1? �Fk�pN� � c1�pN� �Uk�pN� � 1
2

b1
k�pN��P�PN� � P�NN�� ÿ d11�pN�� �Uk�pN� ÿ �Uk�NN��

ÿ 1
4

d11�pN�� �Uk�PP� � �Uk�NP� ÿ �Uk�PM� ÿ �Uk�NM��
� b11

1k � �U1�pN� ÿ �U1�NN�� � b11
2k � �U2�pN� ÿ �U2�NN��

� b12
1k � �U1�PP� � �U1�NP� ÿ �U1�PM� ÿ �U1�NM��

� b12
2k � �U2�PP� � �U2�NP� ÿ �U2�PM� ÿ �U2�NM��

ÿ b1
k

O2r2

2
ÿ r2

2
b1 � dO

dt

� �
k

� �
�pN�;

�15�

where ci � bi?U�, dim � bi?bm=Reff J and bim
jk � Jÿ1nTbi

jb
m
k are evaluated at pN for i� 1, 2. Similar

expressions are obtained at other face points mN, Np and Nm.

3.2. Reconstruction problem and its formal solution

It appears that besides unknown nodal values of the Cartesian velocity components, expressions

such as (15) involve the values �Uk�pN� which are also unknown, but at points which are not nodal

points. This introduces the so-called reconstruction problem: ¯uxes such as �Uk�pN� which are not

de®ned at nodal points must be expressed in terms of nodal unknowns. The interpolation procedure

which solves the reconstruction problem must avoid spurious pressure modes which may exist when

collocated grids are used. One of the most ef®cient ways to overcome this dif®culty is to use a

physical interpolation approach in which a velocity integration points value such as �Uk�pN� is
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expressed not only in terms of values of �Uk at the neighbouring nodes of pN, the set of which (Figure

1) is denoted NB(pN)� {NN, PN, PM, PP, NP, NM} (the reason for this choice of neighbouring

nodes will be justi®ed later), but also in terms of values of other velocity components and pressure at

NB(pN). The most classical approach in this respect is the Rhie and Chow interpolation.29 Its

drawbacks, as well as those of another interpolation practice due to Schneider and Raw,30 have been

analysed in References 31 and 32, where the so-called consistent physical interpolation (CPI) method

is proposed. The application of the CPI method to unsteady laminar ¯ows has been further developed

in Reference 33 for aerofoil problems.

3.3. CPI method

The CPI method determines �Uk�pN� from the solution of the convective form of the momentum

equations at point pN. This interpolation involves the set of neighbours NB(pN) of in¯uencing nodes

(Figure 1). The result can be written at pN as the following explicit expression in �Uk�pN�,
�e1 � DpN� �Uk�pN� � P

NB�pN�
CU

NB�pN� �Uk �NB�pN�� � P
NB�pN�

CPk
NB�pN�P�NB�pN�� � Sk�pN�; �16�

and in a similar way at mN, Np and Nm. For the other interfaces of the control volume D the sets of

active neighbours are

NB�mN� � fMN;NN;MP;NP;MM;MNg;
NB�Np� � fNN;NP;NM; PM; PN; PPg;

NB�Nm� � fNN; PN;MN; PM;NM;MMg:
The in¯uence coef®cients satisfy the consistency conditionsP

NB�pN�
CU

NB�pN� � DpN;
P

NB�pN�
CPk

NB�pN� � 0; k � 1; 2: �17a;b�

The former relation (17a) indicates that �Uk�pN� involves a weighted interpolation of �Uk at

neighbouring nodal values denoted NB(pN). The latter relation (17b) corresponds to the fact that the

summation over pressure values is of the gradient type. It can be shown that the CPI yields second-

order accuracy on a uniform Cartesian grid,32 with an adequate upwinding effect for both velocities

and pressure.31 We shall require the generalized form

�e1 � Df � �Uk� f � � P
NB� f �

CU
NB�f � �Uk �NB� f �� � P

NB� f �
CPk

NB� f �P�NB� f �� � Sk� f �; f � pN;mN;Np;Nm;

�160�
in what follows. Equation (160) can be viewed as a de®nition of the so-called pseudovelocity

Ûk� f � � 1

e� 1� Df

fCU
NB� f � �Uk �NB� f �� � Sk�F�g �18a�

such that

�Uk�f � � Ûk�f � �
1

e1 � Df

P
NB� f �

CPk
NB� f �P�NB� f ��

 !
: �18b�

We still have to demonstrate how the expression of the in¯uence coef®cients CU and CPk and of the

source term Sk in (18) can be obtained from a discrete scheme for the momentum equation written at

f� pN, mN, Np, Nm. This will now be explained for the ¯uxes at point pN using the momentum

equation written at pN. The retained discrete scheme is the so-called multiexponential scheme, which
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consists of using an exponential scheme32 in both directions. The scheme is applied to the convective

form of the momentum equation (8) and the result written at pN is a slight extension of what was

already obtained in Reference 33, namely

�e1 � CN1 � CN2� �Uk�pN� � CP1
�Uk�PN� � CM1

�Uk�NN� � 1
2

CP2� �Uk�NP� � �Uk�PP�� � 1
2

CM2� �Uk�NM�
� �Uk�PM��

� gij

Reff

@2 �Uk

@xi@xj

����
i6�m

� Jÿ2bn
j bm

k

@nT

@xn

@ �Uj

@xm ÿ Jÿ1bi
m

@P

@xm

 !
�pN�

ÿ b1
k

O2r2

2
ÿ r2

2
b1 � dO

dt

� �
k

� �
�pN� ÿ e0

�U0
k �pN� ÿ e00

�U 00
k �pN�; �19�

where the in¯uence coef®cients are

CPi �
Ki

exp�gi� ÿ 1
; CMi �

Ki exp�gi�
exp�gi� ÿ 1

; CNi � CMi � CPi � 0; i � 1; 2;

which involve the convective coef®cients Ki, the previously de®ned diffusion coef®cients dij at pN

along the direction i and the mesh Peclet numbers gi:

Ki � U i ÿ f i

Reff

ÿ gin @nT

@xn

� �
�pN�; gi �

Kihi

dii

:

(Notice that on curvilinear grids the grid spacings hi along xi can be taken equal to 1, except close to

the boundaries where they may take the value 1
2
). The second-order cross-derivative terms in (19) are

treated using a centred scheme

dij

@2 �Uk

@xi@xj

����
i6�m

 !
�pN� � 1

4h1h2

d12�pN�� �Uk�PP� � �Uk�NP� ÿ �Uk�PM� � �Uk�NM��; �20�

as are other ®rst-derivative velocity terms. Finally, the pressure gradient at pN in (19) is centred at

pN:

Jÿ1b1
m

@P

@x1
� 1

2h1

�Jÿ1b1
m��pN��P�PN� ÿ P�NN��; �21a�

Jÿ1b2
m

@P

@x2
� 1

4h2

�Jÿ1b2
m��pN��P�PP� � P�NP� ÿ P�PM� ÿ P�NM��: �21b�

The resulting in¯uence coef®cients in (17) are obtained by substitution of (20) and (21) into (19).

3.4. Equations for nodal unknowns

Upon substitution of closures (160) written at pN, mN, nP and nM into the discrete momentum

equation (13), where relations such as (14) and (15) have been accounted for, we obtain the following

discrete scheme for the momentum equations corresponding to k� 1, 2:

�e1 � DU �NN�� �Uk�NN� � P
NB�NN�

KU
NB�NN� �Uk �NB�NN�� � P

NB�NN�
KkP

NB�NN�P�NB�NN�� � Sk�NN�; �22�

where the velocity and pressure unknowns are located only at NN and at the eight nodal neighbours

of the set NB(NN)� {MM, MN, MP, NM, NP, PM, PN, PP}; the summations are over the eight
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corresponding contributions. The in¯uence coef®cients KkP
NB�NN� involved in the summation for the

pressure terms result from the identity

P
NB�NN�

KkP
NB�NN�P�NB�NN�� � 1

J �NN�Df b
f
k �

Kf

e1 � Df

P
NB�f �

CPk
NB�NN�P�NB�f ��

 !
: �23�

The substitution of closures like (160) into the continuity equation (12) yield similarly, from a

pressure equation of the form

1

J �NN�Df

b
f
k

e1 � Df

P
NB�NN�

CU
NB�f � �Uk �NB�f �� � P

NB�f �
CPk

NB�f �P�NB�f �� � Sk�f �
 !" #

� 0; �24a�

the discrete pressure equationP
NB�NN�

KPk
NB�f � �Uk �NB�NN�� � P

NB�NN�
KPP

NB�NN�P�NB�NN�� � SP�NN�: �24b�

Equation (24a) can be viewed as a pressure equation if the substituted closure takes the form of

(18b) instead of (160):

div�HP� � 1

J �NN�Df

b
f
k

e1 � Df

P
NB�f �

CPk
NB�f �P�NB�f ��

 !" #
� ÿdivÛ � ÿ 1

J �NN�Df �bf
kÛk�f ��: �25�

The two momentum equations (22) (k� 1, 2) and equation (24b) written at each inner point NN(i, j)

in the computational space generate the system of unknowns. We group the three unknowns �U1, �U2

and P at each grid point (i, j) to de®ne a vector

X�i; j� � k �U1�i; j�; �U2�i; j�; P�i; j�kT

with three components and we order the unknowns from values i� 1 to imax and, for any given value

of i, from j� 1 to jmax. When the i(j7 1)th, ijth and i(j� 1)th rows of the matrix A corresponding to

(22) (k� 1), (22) (k� 2) and (24b) are also grouped in this order, the matrix A appears as a block

36 3 nine-diagonal matrix whose non-vanishing elements in the ijth block 36 3 row are located on

the (i7 1)(j7 1)th, (i7 1)jth, (i7 1)(j� 1)th columns (in¯uence coef®cients of points MM(i, j),

MN(i, j), MP(i, j) respectively), on the i(j7 1)th, ijth, i(j� 1)th columns (in¯uence coef®cients of

points NM(i, j), NN(i, j), NP(i, j) respectively) and on the (i� 1)(j7 1)th, (i� 1) jth, �i� 1�� j � 1�th
columns (in¯uence coef®cients of points PM(i, j), PN(i, j), PP(i, j) respectively). This demonstrates

the optimal compactness of the CPI method which essentially results from the retained sets of ¯ux

point neighbours like NB(pN).

3.5. Pressure±velocity coupling algorithm

The algorithm which yields a coupled solution of the system (22), (25) is directly inspired by the

PISO algorithm34 and consists of the following steps.

1. Initiate the velocity ®eld and the pressure ®eld at time t0.

2. New time step t� t�Dt.

3. Start iterative procedure with �Uk � �U0
k , P�P0, �Uk�f � � �U 0

k �f �.
4. Compute the reconstruction coef®cients from the ®eld of step 3.

5. Solve the momentum equations to obtain a new prediction for �Uk .

6. Solve the continuity equation to obtain pressure P with coef®cients obtained from step 4 and �Uk

from step 5.
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7. Correct the velocity ®eld with coef®cients from step 4, �Uk from step 3 and P from step 6.

8. Reconstruction at interfaces to get �Uk� f � with coef®cients from step 4, P from step 6 and �Uk

from step 7.

9. If non-linear residuals are low enough, go to step 1 and update t; otherwise, go to step 3 and

update the iteration count within time step t.

4. RESULTS

Before presenting results, some numerical parameters need to be speci®ed. For each time step a

reduction by one order of magnitude of non-linear residuals of discrete momentum equations is

required. Also, the divergence of the velocity ®eld is decreased to between 10±6 and 10±10 with the

BB model and to between 10±7 and 10±9 with the K±o model. Turbulence equations see their non-

linear residuals lowered by at least two orders of magnitude for the turbulent Reynolds number

equation of the BB model and for the two equations in the K±o model, except for the K-equation at

the beginning of the upstroke: non-linear residuals are then decreased by only one order of magnitude

at each time step. A general trend is that the CPU cost per time step increases with decreasing

reduced frequency for a ®xed value of Dt*. The CPU cost per time step also increases with increasing

Da. Some results concerning the in¯uence of the grid size and of the time step are given in Figure 9 of

the Appendix. The presented results focus on the second period of oscillations: extensive tests have

shown that, in contrast with the ®ndings of Raffel et al.,35 the repeatability of calculations is good

between the second cycle and the following ones (see Figure 10 of Appendix).

We consider the ¯ow past aerofoils oscillating in pitch with the incidence law

a � a0 � Da cos�2pft� � a0 � Da cos�2kt*�;
where k is the reduced frequency and t*� tU1=c is the non-dimensional time de®ned from the chord

c of the aerofoil. The reduced frequency is the most in¯uential parameter of dynamic stall: it

represents the ratio of two time scales, one imposed by the pitching motion, (2pf )±1, and the other by

the freestream velocity and the half-chord, c=2U1 .

Case 1

The ®rst case considered is that of an NACA 0012 aerofoil with a0� 15�, Da� 10�, k� 0�15 and

Re� 106, for which experimental data27 corresponding to the `deep stall' case of McAlister et al. are

available. Because of the particularly high values of a0 and Da, this case has so far been considered

only in References 11, 12 and 18. The non-dimensional period of motion is T*� 20�94, with 4190

time steps per cycle for Dt*� 0�005. Two models have been tested, the so-called BB model and the

K±o SST model.

We consider the sequence of events starting from the incidence 0� (Figures 2(a)±2(u)). In

agreement with the experimental data,35 the ¯ow remains attached up to an incidence of about 18�.
The instantaneous streamlines at 15� (Figure 2(c)) are still indicative of fully attached ¯ow, in good

agreement with the data35 at 17�, for Re� 3�736 105. Thus there is a signi®cant delay of stall to

higher incidences with respect to that (as� 16�) found at ®xed incidence. Separation occurs around

20� (Figure 2(d)), while experiments36 which involve the same motion but Re� 2�56 106 ®nd it at

a� 19�±20�. As the aerofoil leading edge moves upwards, the boundary layer between stagnation and

separation experiences a moving wall jet effect. The boundary layer has a fuller velocity pro®le as

compared with the steady case and is therefore more resistant to separation (on the downstroke the

effect will be the opposite, promoting separation). As the incidence increases (Figures 2(e)±2(i)), a

dynamic stall vortex (DSV) develops in both cases near the leading edge, although later with the K±o
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Figure 2(a)±2(u). Flow past NACA 0012. Re� 106, k� 0�15. Comparison between calculations performed with BB model and
K±o SST model. 2006 90 O-type conformal grid. dt*� 0�005. Incidences are indicated. Upper part, wall pressure coef®cient;
middle part, relative streamlines; lower part, instantaneous mean vorticity ®eld. Instantaneous force coef®cients are also
indicated. Left, BB model; right, K±o model. Time instants at which the ¯ow is plotted in Figure 4 are speci®ed by a letter
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model than with the BB model. This DSV is well known to be responsible for higher lift forces than

those occurring at ®xed incidence. At a� 24�2� the DSV is double-structured in both calculations,

although twin eddies have already developed near the leading edge (Figure 2(g)). Also, the pressure

found at this incidence with K±o is very similar in shape to that found in Reference 36 at 23�6� (see

Figure 3). Streamline data35 indicate also a multiple-eddy structure at 24� with a high-vorticity region

emanating from the leading edge. This is con®rmed by the formation of the leading edge vortex found

in Reference 36 at a� 23�2�. Thus, during this upstroke phase, streamlines seem to be better

described by the BB model than by the K±o model. Levels of vorticity peak at about ÿ22 in both

calculations, slightly lower than the experimental maxima35 found, about ÿ24. During the ®nal part

of the upstroke the rate of increase in the DSV is more pronounced near the trailing edge than near the

leading edge. At the maximum incidence (Figure 2(h)) the velocity ®eld changes drastically: the DSV

separates from the aerofoil near the leading edge, while the low pressure level at about 79 per cent

chord pulls ¯uid with anticlockwise vorticity from the pressure surface, causing the formation of a

small trailing edge vortex (TEV) as a takes its maximum value. This TEV has been noticed also in

Reference 36 for the same pitching motion but at Re� 44,000; it contributes, while growing as here,

to lifting the DSV from the upper aerofoil surface. However, while the DSV dwells on the suction

surface over a large part of the oscillation cycle, the TEV takes place within a much smaller fraction

of the cycle but its growth provokes a large oscillation in the lift coef®cient. Again the level of

vorticity maxima in the leading edge shear layer is about 22, in rather good agreement with the

data.35 However, Raffel et al.35 indicate a vortex shedding from the leading edge region which is not

captured by the tested turbulence models, as well as a strong variability of the DSV from cycle to

cycle which is not found in the experiments. This could be a Reynolds number effect, but it indicates

more likely the incapacity of statistical models to capture the randomness of the ¯ow, which is one of

the most dominant experimental features of the downstroke phase. This fact was already mentioned

in References 35±38.

In contrast, the ¯ow features during the beginning of the downstroke are very similar in both

models and the extent of the recirculation zone is signi®cantly higher than in the experiments at

a� 24�5� and 24� (Figures 2(j) and 2(k)). The DSV core passes off the trailing edge at 24�6� with the

BB model and slightly later with the K±o model; such values can be compared with the value of

24�8� found in Reference 36. The shedding of the DSV occurs between these incidences with the BB

model and around 23�5� with the K±o model, which seems slightly favoured by a comparison with

the experimental data.35 Such discrepancies between the models are fully consistent with the fact that

the convection velocity of the vortex is slightly higher for the BB model (between 0�36 and 0�55) than

for the K±o model (between 0�3 and 0�4), in good agreement with the experimental data around

0�35±0�4 indicated in Reference 11. The TEV which has grown to a large vortex leaves the trailing

edge at almost the same decreasing incidence as the DSV, in agreement with the experiments.37 In the

wake the DSV and the TEV combine to form a structure whose cross-section looks like a mushroom

and which evolves, moves upwards and increases in size as it convects downstream. This structure is

characteristics of vortex-shedding phenomena; it has also been evidenced in References 37 and 39

and could be signi®cant in blade±vortex interactions and aerodynamic sound generation. The

occurrence of a secondary vortex near the leading edge (LEV) and the associated increase in lift

during the downstroke motion which was noticed in Reference 40 is also found in the present

calculations. The LEV is seen to emerge from the twin- eddy structure found near the leading edge at

amax and contributes to the lift coef®cient, which is found to increase by about 50 per cent and 30 per

cent between 22�5� and 20�5� (Figures 2(m) and 2(n)), while the LEV extends along the suction side

of the aerofoil. Its intensity is rather low, as indicated by the very weak leading edge suction peak.

When the incidence is decreased further, the LEV extends along the whole chord while moving

downstream (Figures 2(o)±2(s)). The reattachment of the ¯ow starts from the leading edge at about

348 E. GUILMINEAU, J. PIQUET AND P. QUEUTEY

INT. J. NUMER. METH. FLUIDS, VOL 25: 315±366 (1997) # 1997 by John Wiley & Sons, Ltd.



13� and occupies 60 per cent of the chord at 7�4�, in good agreement with the data.35 Also,

experimental data36 indicate a complete reattachment at about 7�, slightly sooner than in both

calculations (Figures 2(t) and 2(u)).

It is interesting to compare the computed wall pressure coef®cients with the measured ones (Figure

3). The agreement between the two is very satisfactory during the upstroke phase. The maximum

pressure peak is computed at about 16�8, whereas it is measured at 13�5; thus the intensity of the low

pressure associated with the DSV core is strongly overestimated, especially with the BB model. Also,

as usual, the experimental data lead the computed ones. Finally, the downstroke phase no longer sees

the in¯uence of the shed vortices for incidences lower than 20�.
Hysteresis loops are presented in Figure 4. Similar trends are found with both models during the

upstroke phase, which shows a lift slope in good agreement with the experimental data and with the

lift slope of the corresponding steady ¯ow. However, the BB model is seen to slightly underpredict

the stall angle (de®ned as the point of maximum CL) at 23�8� if the ¯ow is computed as fully

turbulent, with a correct prediction at 24�4� with a transition point arbitrarily located at the pressure

peak. The K±o model yields in contrast a correct stall angle which is not in¯uenced by a transition

point imposed at the pressure peak. The computed maximum lift coef®cient is about 2�47 with the BB

model and 2�26 with the K±o model and in the experiments. At the maximum angle of attack the lift

coef®cient is found at 2�30 with the BB model and 2�25 with the K±o model, somewhat higher than

the value of 2 found in the experiments. This disagreement is, however, far weaker than that found in

References 11 and 12. During the downstroke phase, differences between the models and the

experimental data become more important. A ®rst lift minimum is found at a� 23�5� as an effect of

the suction generated by the TEV. This minimum is found in both calculations but later at a� 22�.
The maximum lift is found in the experiments at about 1�2 for a� 19�. Two minima are found with

both models, with a general trend for the calculations to lag the experiments. The computed lift

minimum is about 0�15 with the BB model and 0�10 with the K±o model close to a� 9�1�, whereas

the experiments ®nd it at a� 4�3� with a value close to zero.

The drag coef®cient experiences a rapid increase during the upstroke, with a maximum value 10

per cent higher than the experimental value of about 1�0. While the BB model follows closely the

experimental increase, the K±o model lags the experimental data. However, the most signi®cant

differences are found with both models during the downstroke phase, with a trend to the

overprediction of drag. The time history of the moment coef®cient also follows the development of

the ¯ow closely. As the leading edge suction grows, the nose-down pitching moment increases slowly

from a low constant value. Just as the DSV vortex is shed, the minimum moment coef®cient is about

ÿ0�64 at a� 23�7� down with the K±o model and ÿ0�74 at a� 24�5� down with the BB model,

compared with the experimental value of ÿ0�45 at a� 24�9� down. This disagreement is due to the

computed enhanced low pressure within the DSV core. The trailing edge formation causes an

indentation along the return cycle at about 20� down. This indentation is also found in both

calculations, but it is signi®cantly deeper owing to a suction effect which is stronger than measured

experimentally (and lagged). This trend is fully consistent with the corresponding overprediction of

drag. Subsequently, the moment coef®cient levels off as the incidence decreases. It is then driven to

its maximum value of about 0�8 in both models and in the experiments as well, but at a computed

incidence of 10�, slightly too high. At this point the ¯ow terminates its reattachment along the

extrados.

Case 2

The second test case has been studied only with the K±o model owing to its general superiority in

the foregoing test case, with the aim of investigating the effect of reduced frequency. The values of
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Figure 3. Flow past NACA 0012. Re� 106, k� 0�15. Wall pressure coef®cients: o, experimental data;27 � � � �, K±o SST model;
ÐÐÐÐ, BB model
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Figure 4. Flow past NACA 0012. Re� 106, k� 0�15. Comparison between calculations performed with BB model and K±o
SST model. 2006 90 O-type conformal grid. dt*� 0�005. Hysteresis loops of force coef®cients. o, Experimental data;27 � � � �,
K±o SST model; ÐÐÐÐ, BB model. Time instants at which the ¯ow has been plotted in Figure 2 are speci®ed by a letter
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the parameters are a0� 10�, Da� 15� and k� 0�10. A time step Dt*� 0�01 (which does not yield

force loops different from those resulting from Dt*� 0�005) is used, so that one cycle is represented

by 3142 time steps.

The ¯ow remains attached (Figure 5(a)) until a slightly lower incidence than for the previous case,

around 15�, i.e. signi®cantly higher than the 8� incidence observed in Reference 37 at a much lower

Reynolds number (Re� 44,000). The upstroke phase is in good agreement with the experimental

data, but for a> 20� some differences occur (Figure 5(b)). The development and expansion of the

DSV show a lift stall which is slightly postponed with respect to the experiments, in which it occurs

between 23� and 24�, just before the moment stall at 24�. Such a phenomenon is probably associated

with the fact that a transition may occur in the experimental data in the suction peak zone. The main

effect of a transition zone is to anticipate the development of the DSV during the upstroke phase,

thereby improving the agreement with the experiments for lift and moment stall. Con®rmation that

the ¯ow sequence evolves earlier than in the previous case can be evidenced: the streamlines at

a� 24�9� up (Figure 5(c)) resemble the streamlines at a� 24�9� down (Figure 2(i)); also, the levels of

vortex pressure minima and thus the DSV intensities are very similar, around ÿ4. This could be

expected, since the time elapsed until the aerofoil reaches its highest incidence is longer than in the

previous case (because of the lower reduced frequency) when compared with the time taken by the

aerofoil to complete the upstroke.

A postponed increase in lift and drag also follows the beginning of the downstroke (Figure 5(d)),

but while the level of the drag is correct at about 0�9, the lift level is overestimated by about 70 per

cent. This phenomenon is associated with the shedding of the DSV and the subsequent motion of the

LEV downstream at about 22�, thereby leading to reattachment very quickly, around 16�, instead of

less than 10� in the experiments. However, it is quite encouraging to see that the small anticlockwise

loop around a� 25� found in the experiments27 is reproduced (although too intensi®ed because of the

already noticed intensi®ed lift level). The mentioned TEV is still present, although its effect seems

less important because of the relatively low frequency, in correct agreement with Reference 37. A

comparison of sequences of vortex shedding shows also a noticeable increase in the wavelength of

vortices in the wake (see e.g. Figure 5(e)) when compared with the previous case. The most important

differences are found in the lower branch of the hysteresis loop. However, some differences are not

unexpected, as the lift loop is known to be sensitive to ¯ow parameters other than k, e.g. surface

roughness, aspect ratio, etc. The undulations of the lower branch have also been observed in the

experimental data.40 As in the previous case, the variations in the lower branch of the hysteresis loops

(Figure 6) for CL and CM are due to the passage of the successive vortices following the DSV (Figure

5(f)).

Case 3

A third NACA 0012 test case has been performed with the following parameters: a0� 10�,
Da� 15� and k� 0�25. Except for the increased reduced frequency, the ¯ow parameters are the same

as in the previous case. The calculations show a reasonable prediction of the upstroke phase and of

the beginning of the downstroke phase, with relatively well estimated maximum lift and drag. The

effect of increasing the frequency is to delay the occurrence of the DSV, as indicated by a comparison

between pressure coef®cients at 24�9� for k� 0�1 and 0�2 (Figure 7); this in¯uence has already been

noticed in Reference 40. It is also found that the lift increases until amax and does not show signi®cant

hysteresis during the beginning of the downstroke, in contrast with the moment coef®cient which

stalls much later than the beginning of the downstroke. The DSV and the TEV appear to be shed

together close to the maximum incidence as in Reference 37. However, the vortex-shedding instant is

slightly postponed in the calculation, resulting in a delayed decrease in lift and drag, with
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Figure 5(a)±5(g). Flow past NACA 0012. Re� 106, k� 0�10. Calculations performed with K±o SST model. 2006 90 O-type
conformal grid. dt*� 0�01. Left, fully turbulent calculation; right, transition near forward stagnation point. Time instants at

which the ¯ow is plotted in Figure 6 are speci®ed by a letter
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Figure 5 (continued )
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Figure 5 (continued )
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Figure 5 (continued )

356 E. GUILMINEAU, J. PIQUET AND P. QUEUTEY

INT. J. NUMER. METH. FLUIDS, VOL 25: 315±366 (1997) # 1997 by John Wiley & Sons, Ltd.



Figure 5 (continued )
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Figure 5 (continued )
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Figure 5 (continued )
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Figure 6. Flow past NACA 0012. Re� 106, k� 0�10. Calculations performed with K±o SST model. 2006 90 O-type
conformal grid. Dt*� 0�01; � � � �, fully turbulent calculation, Dt*� 0�01 (up), 0�005 (down); Ð ÐÐÐ, transitional calculation,

Dt*� 0�01. Time instants at which the ¯ow has been plotted in Figure 5 are speci®ed by a letter
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Figure 7. Flow past NACA 0012. Re� 106, k� 0�25. Calculations performed with K±o SST model. 2006 90 O-type
conformal grid. Dt*� 0�005. Wall pressure coef®cients. o, Experimental data;27 � � � �, transitional calculation; ÐÐÐÐ, fully

turbulent calculation

TURBULENT VISCOUS FLOW PAST AEROFOILS 361

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 315±366 (1997)



Figure 8. Flow past NACA 0012. Re� 106, k� 0�25. Calculations performed with K±o SST model. 2006 90 O-type
conformal grid. Dt*� 0�005. Hysteresis loops of force coef®cients. o, Experimental data;27 � � � �, transitional calculation;

ÐÐÐÐ, fully turbulent calculation
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Figure 9. In¯uence of grid size and time step on force coef®cients. Re� 106, k� 0�15. K± o SST model. o, Experimental
data;27 ÐÐ ±, 1206 80 O-grid, Dt*� 0�01; � � � �, 2006 90 O-grid; Dt*� 0�01; ± Ð Ð, 2006 90 O-grid, Dt*� 0�01;

Ð ÐÐÐ, 1206 80 grid; Dt*� 0�002
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signi®cantly higher negative values of the moment coef®cient. This is consistent with the presence of

a high-suction region near the trailing edge, as shown by the wall pressure coef®cient at a� 17�1�
down. In contrast, the wall pressure resulting from the experiments does not show any signi®cant

peak, indicating that the ¯ow is still completely separated from the upper surface. The sweeping

phase is achieved at about 8�, an incidence at which separation has been completely removed. The

results also show that there is a slight improvement in global forces if the transition is imposed

upstream of the suction peak (Figure 8), although previously mentioned trends during the downstroke

are still present.

Figure 10. Comparison between force coef®cients for cycles 1, 2 and 3 on 1206 80 O-grid. Dt*� 0�01. ÐÐÐÐ, BB model;
� � � �, K±o SST model
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5. CONCLUSIONS

A new numerical method has been applied to the calculation of deep dynamic stall. Massive

recirculation zones, the formation and convection of large vortical structures and the details of the

dynamic stall phenomena have been identi®ed and their relation to the reduced frequency has been

assessed. The turbulence models used indicate good agreement with available data during the

upstroke phase, in spite of signi®cant differences which occur mainly during the downstroke phase. It

is found that such differences are generated by the strong overestimation of the suction induced by

shed vortices. This is probably due to the turbulence model used. However, apart from experimental

conditions which are not always speci®ed, there is also the problem of the signi®cance of the

unsteady Reynolds-averaged Navier±Stokes calculations when the massive large-scale motion has

frequencies which make the concept of an instantaneous mean ¯ow rather dubious.

APPENDIX

Some tests of grid sensitivity have been performed for both the K±o model and the BB model.

Results are given in Figure 9. Figure 10 demonstrates the good repeatability of aerodynamic

coef®cients between cycles 1, 2 and 3.
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